NEW GENERAL INTEGRAL INEQUALITIES FOR (α,m)-GA-CONVEX FUNCTIONS VIA HADAMARD FRACTIONAL INTEGRALS
نویسنده
چکیده
In this paper, the authors give a new identity for Hadamard fractional integrals. By using of this identity, the authors obtain new estimates on generalization of Hadamard, Ostrowski and Simpson type inequalities for (α,m)-GA-convex functions via Hadamard fractional integrals.
منابع مشابه
New general integral inequalities for quasi-geometrically convex functions via fractional integrals
In this paper, the author introduces the concept of the quasi-geometrically convex functions, gives Hermite-Hadamard’s inequalities for GA-convex functions in fractional integral forms and defines a new identity for fractional integrals. By using this identity, the author obtains new estimates on generalization of Hadamard et al. type inequalities for quasi-geometrically convex functions via Ha...
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملSome new results using Hadamard fractional integral
Fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and derivatives of arbitrary order. The purpose of this work is to use Hadamard fractional integral to establish some new integral inequalities of Gruss type by using one or two parameters which ensues four main results . Furthermore, other integral inequalities of reverse ...
متن کاملOn new inequalities of Hermite–Hadamard–Fejer type for harmonically convex functions via fractional integrals
In this paper, firstly, new Hermite-Hadamard type inequalities for harmonically convex functions in fractional integral forms are given. Secondly, Hermite-Hadamard-Fejer inequalities for harmonically convex functions in fractional integral forms are built. Finally, an integral identity and some Hermite-Hadamard-Fejer type integral inequalities for harmonically convex functions in fractional int...
متن کاملON GENERALIZATION OF DIFFERENT TYPE INTEGRAL INEQUALITIES FOR s-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
In this paper, a new general identity for differentiable mappings via Riemann-Liouville fractional integrals has been defined. By using of this identity, author has obtained new estimates on generalization of Hadamard, Ostrowski and Simpson type inequalities for functions whose derivatives in absolutely value at certain powers are s-convex in the second sense.
متن کامل